

Evaluation of remote-sensing snow observations for perspective of DA in NWP

/ after Maxime Quenon's Internship Report/

Ekaterina Kourzeneva, Laura Rontu, Terhikki Manninen and Niilo Siljamo; thanks for Elena Shevnina

8-9 March, Offenbach, DWD

Scientific motivation:

A gap between new advanced remote-sensing observations of snow and simple methods of snow DA in NWP

Snow Extent (SE): a binary value (yes/no).

- No statistical interpolation (OI) methods.
- No understanding of observational error.
- Difficult to combine observations from different satellites.
- In DA, we just fully trust observations.

Practical motivation and History

No remote-sensing snow observations are assimilated into HARMONIE: the situation should be improved.

Summer 2016, Maxime Quenon, the Intern from ENSG at FMI.

The main focus of his work:

To evaluate different remote-sensing snow products for the perpective of DA in NWP.

- Results from Maxime: Evaluation of different snow products:
 - data availability and quality
 - comparison with SYNOP data
 - comparison with model data
- · Ideas:
 - observational error for binary data what is it? how to calculate?
 - what can be a basis to develop the statistical interpolation methods for them

Towards improved objective analysis of snow, which combines data from different satellites

Satellite snow products

SE:

categorical value

MSG (METEOSAT)

geostationary visual band -> cloudiness problem resolution ~ 3 km temporal resolution: raw ~ 15 min, final ~ 1 day

METOP

polar orbiting visual band -> cloudiness problem resolution ~ 1 km temporal resolution: raw ~ 12 hours, final ~ 1 day

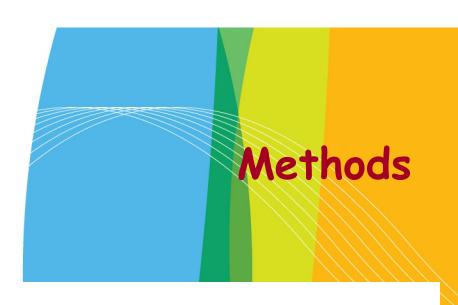
Surface considered	No processing	Totally snow covered	Partially snow covered	No snow	Unclassified	Water
Value in the classification	0	1	2	3	4	5
MAXIME QUENON, 2016						

real value

 SYNOP in obs points at SYNOP times snow depth

real value

 Harmonie SWE snow fraction resolution ~ 2.5 km every 3 hours


In situ snow data Model snow data

- Averaging in time => data on daily basis
- Reprojecting from one grid to another using the nearest neighbor method
- Converting the binary data to the snow fraction when upcoming from the finer to coarser grid
- Converting SWE to the snow depth and back using the snow density climatology
- Converting SWE to the snow fraction and back using the ad hoc formula: $\frac{SWE}{SWE + 10}$
- Converting the snow fraction to the binary SE using a threshold value of 0.5

Visual comparison

· maps

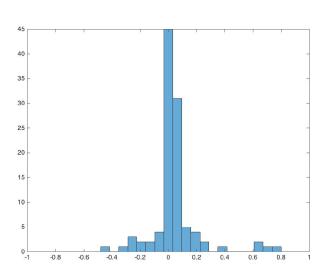
Statistics

		4 - 1-	۔ ۔ ا
•	contingency	tab	les

	An	alysis 2	
Analysis 1	Snow	No snow	
Snow	а	ь	
No snow	c	d	

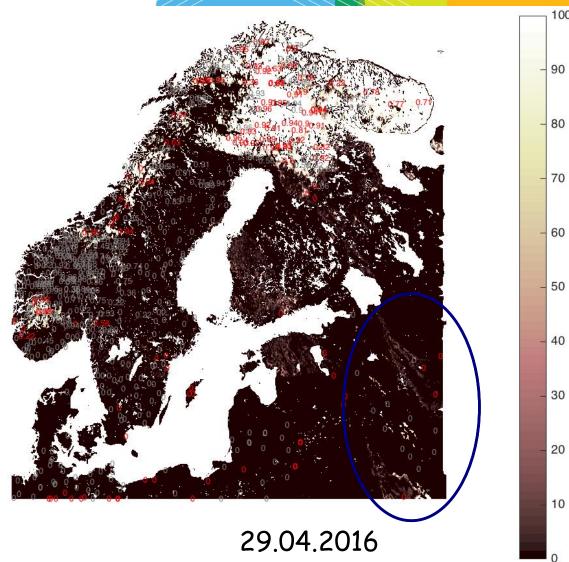
• coefficients from the contingency tables and time series of them:

histograms and double histograms of errors (differences)



Snow data comparison

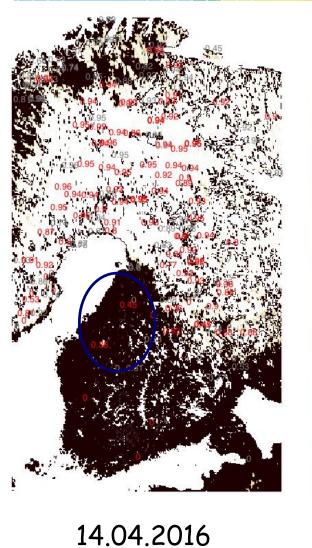
	SYNOP	MSG	МЕТОР	Globsnow	Harmonie
SYNOP		*	*		-
MSG			*	-	*
МЕТОР				-	*
Globsnow	Daily sta	2015-2016 tistics, so Scandinav	ampling in		**



METOP vs SYNOP

Diff=METOP-SYNOP

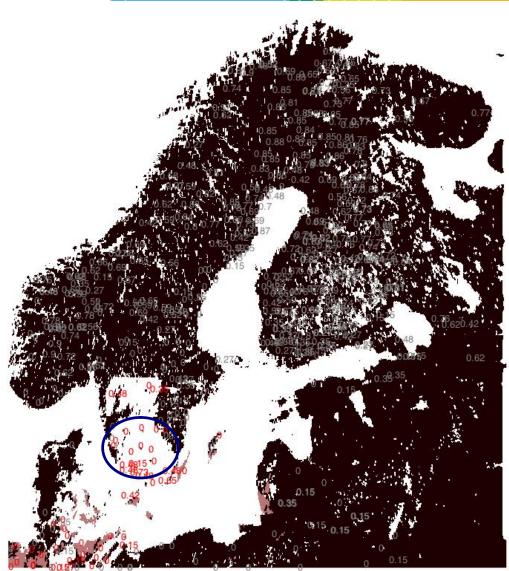
√ "False" snow in METOP



Diff=METOP-SYNOP

√ "Not detected" snow in METOP

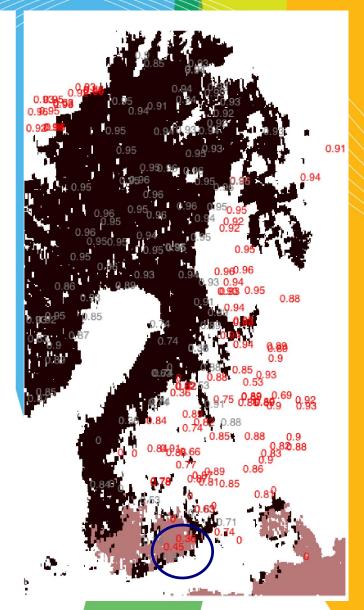
METOP vs SYNOP



20 18 16 14 12 10 8 6 4 2 0 0 0 0 1, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

√ "False" snow in MSG

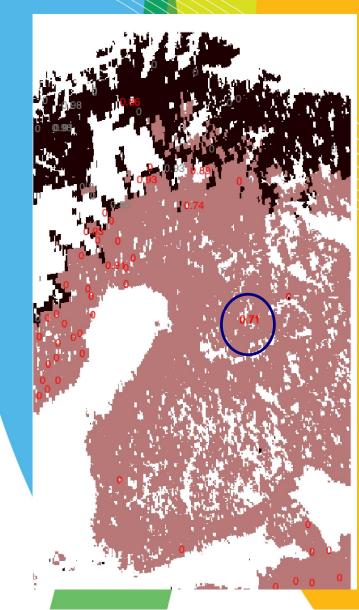
23.11.2015



√ "Not detected" snow in MSG

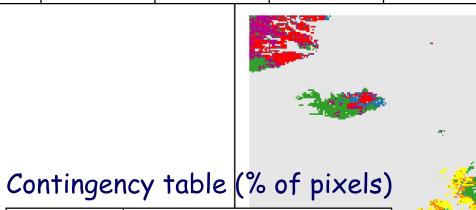
04.04.2016

MSG vs SYNOP



✓ Are SYNOPs always truth?

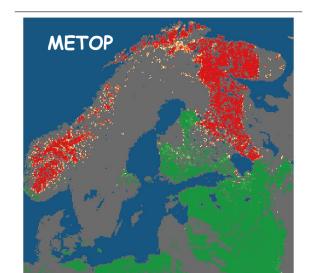
MSG vs SYNOP



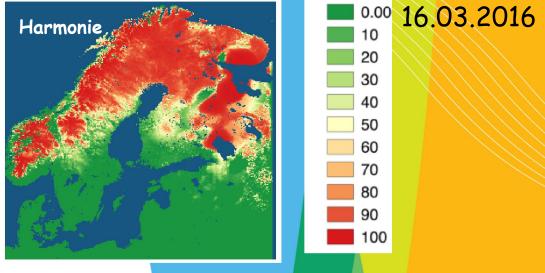
09.05.2016

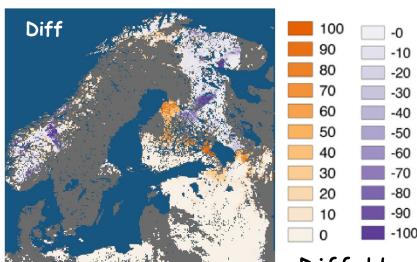
METOP vs MSG

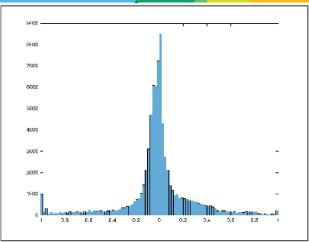
		METOP		
		Snow	No snow	No data
M	Snow	Red	Orange	Blue
S	No snow	White	Yellow	Brown
	No data	Pink	Cyan	Green

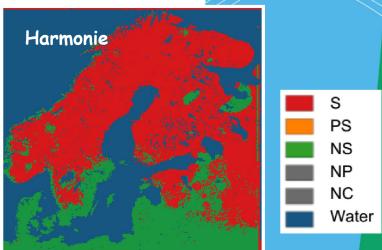


		METOP		
		Snow	No snow	No data
M S	Snow	11.6	0.06	3.79
G	No snow	0.37	20.92	9.75
	No data	2.70	1.71	49.12

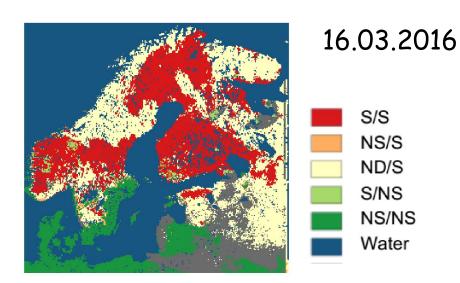

15.03.2016




Snow fractions



Diff=Harmonie-METOP



MSG vs Harmonie

Contingency table (% of pixels)

		Harmonie	
		Snow No snow	
MSG	Snow	64,76	1.47
	No snow	3.10	30.33

TIETEEN LAITOS CONCLUSIONS FROM COMPARISONS ISH METEOROLOGICAL INSTITUTE CONCLUSIONS FROM COMPARISONS

- Overall agreement between all sources of data is good. But we look into details ... All data sources contain errors.
- SYNOP data: representativeness errors, coding errors.
- · Both METOP and MSG data overestimate SE due to cloud contamination.
- Both METOP and MSG may have errors of "not detected snow"
- METOP may give the "added value" to MSG products
- Errors for all types of observations, as well as model errors, should be considered in NWP snow analysis
- How to improve the analysis system?

Ideas: basis for OI

- Use Contingency tables to develop OI for SE
- Make sampling in time
- · Calculate SE climatology:

$$f < \begin{cases} 0 \\ 1 \end{cases} \quad \begin{cases} N_1 \\ N_2 \end{cases} \quad N_1 + N_2 = M$$

$$\bar{f} = \frac{1}{M} (0 \cdot N_1 + 1 \cdot N_2)$$
 $\bar{f} = \frac{N_2}{M}$ $\bar{f} = p$

Consider the deviation:

$$f' = \left(f - \bar{f}\right) < \begin{cases} -p \\ 1-p \end{cases}$$

· Consider the value:

$$(f'(r_1)-f'(r_2))^2$$

Ideas: basis for OI

		$f'(r_1)$	
		$-p(r_1)$	$1-p(r_1)$
f'(x)	$-p(r_2)$	n ₁₁	n ₁₂
$f'(r_2)$	$1-p(r_2)$	n ₂₁	n ₂₂

· Define a structure function:

$$b(r_1, r_2) = \frac{1}{M} [(p(r_1) - p(r_2))^2 (n_{11} + n_{22}) + (p(r_2) - p(r_1) + 1)^2 n_{12} + (p(r_2) - p(r_1) - 1)^2 n_{21}]$$

LINNISH METEOROLOGISKA INSTITUTET CINNISH METEOROLOGISKA INSTITUTE CONTINUES CONTINUES

Define an autocorrelation function:

$$m(r_1, r_2) = \frac{1}{M} [p(r_1)p(r_2)n_{11} - (1 - p(r_1))p(r_2)n_{12} - p(r_1)(1 - p(r_2))n_{21} + (1 - p(r_1))p(r_2)n_{22}]$$

· Define an obs. error:

$$\widetilde{\delta} \approx 0 \qquad \overline{\delta^2} = \frac{d_{12} + d_{21}}{M}$$

δ		J	C
		0	1
~	0	0 <i>d</i> ₁₁	-1 _{d₁₂}
\int	1	1 _{d₂₁}	0 _{d₂₂}

Following Gandin, 1965, calculate an obs. error and develop OI

Thank you for your attention.

Questions?