

Snow processes and their drivers in Sierra Nevada (Spain), and implications for modelling.

M.J. Polo, M.J. Pérez-Palazón, R. Pimentel, J. Herrero

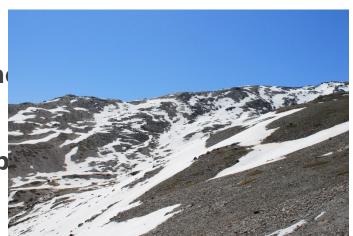
Granada,02 de November 2016

SECTIONS

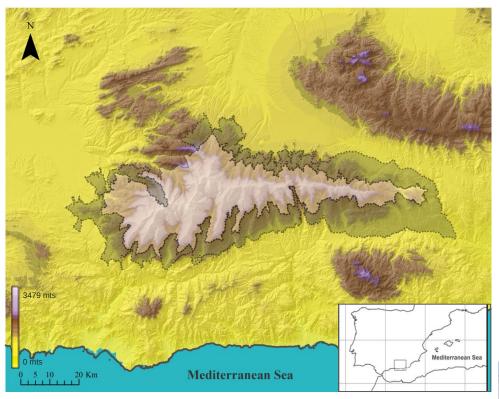
- 1. Introduction
- 2. Study Site: Sierra Nevada
- 3. Physical model structure
- 4. Remote sensing
- 5. Examples

MOUNTAINOUS SITE: SNOW

- Study of spatiotemporal evolution of the
 - variability of the atmospheric agents
 - availability of water resources
- Heterogenous medium on different sp



- •High level of solar energy income throughout the year
 - •Variable character with lower precipitation


HYDROLOGICAL REGIME

Extreme & Highly variable

High importance of WATER RESOURCES

Vegetation

- Typical high mountain vegetation
- The scarcity of trees in areas with snow

Physical Descriptors

Latitude: 37ºN

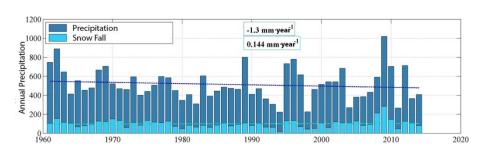
Elevation: 3500 masl

- Distance to the sea (40)
- Long (60 km)
- Altitudinal gradients
- Great differences

Meteorological Features

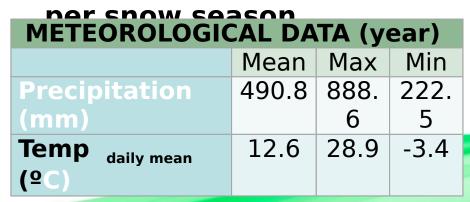
- High mountain + semiarid climate
- Strong variability between years
 - Anual Precipitation
 - Average Temperature in snow season (-5,+5 °C)
- Complete summer melt
- Several melting cycles per

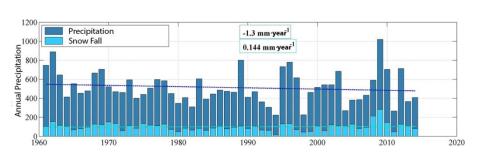
cnnwcaachn					
METEOROLOGICAL DATA (year)					
	Mean	Max	Min		
Precipitation	490.8	888.	222.		
(mm)		6	5		
Temp daily mean	12.6	28.9	-3.4		
(ºC)					

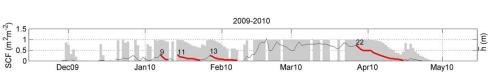

Meteorological Features

- High mountain + semiarid climate
- Strong variability between years
 - Anual Precipitation
 - Average Temperature in snow season (-5,+5 °C)
- Complete summer melt
- Several melting cycles per

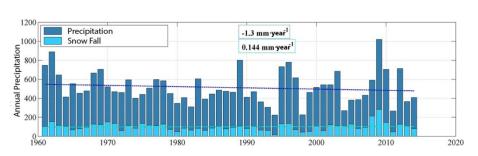
METEOROLOGICAL DATA (year)				
	Mean	Max	Min	
Precipitation	490.8	888.	222.	
(mm)		6	5	
Temp daily mean	12.6	28.9	-3.4	
(ºC)				

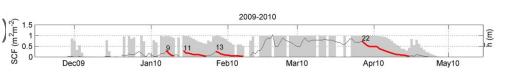



Meteorological Features


- High mountain + semiarid climate
- Strong variability between years
 - Anual Precipitation
 - Average Temperature in snow season (-5,+5 °C) (5,0.5)
- Complete summer melt
- Several melting cycles

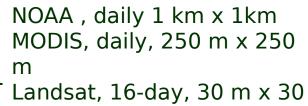
<u>Meteorological</u> **Features**


- High mountain + semiarid climate
- Strong variability between years
 - Anual Precipitation
 - Average Temperature in snow season $(-5, +5 \, {}^{\circ}\text{C})$
- **Complete summer melt**
- **Several melting cycles**


Special wrotestion • Sunny days dominant

- emers do ring phinter (1986)
- Natural Park (1989) and National Park (1999) (1750 /862 Km²)

HYDROLOGICAL MODELS


(Physical & Distributed)
Calibration & Validation

Mass and Energy Balance

SATELLITE REMOTE SENSING SPATIAL RESOLUTION

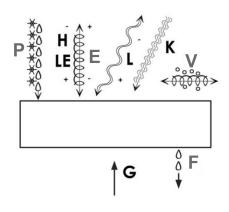
limiting factor

LANDSAT IMAGERY

TERRESTRIAL PHOTOGRAPHY

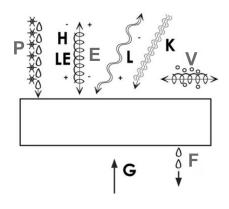
Preprocesing

Snow spatial extent



IMAGES	SATELLITE	TERRESTRIAL
Spatial Resolution	Fixed	Variable
Temporal Resolution	Fixed	Variable

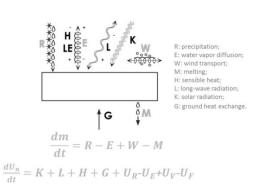
- WiMMed: Physically based and totaly distributed hydrological model
- Develop for Mediterranean regions: Take into account the specific characteristic of the snow in semiarid areas

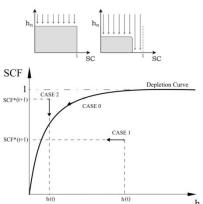


$$\frac{dSWF}{dt} = R - F + W$$

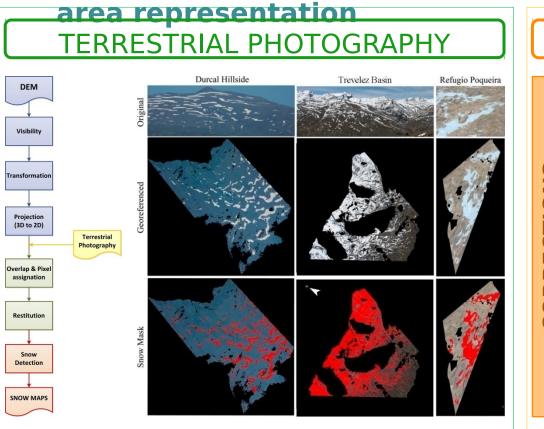
$$\frac{\partial \mathcal{U}}{\partial t} = \mathcal{K} + \mathcal{L} + \mathcal{H} + \mathcal{G} + \mathcal{U}_{\mathcal{R}} - \mathcal{U}_{\mathcal{E}} - \mathcal{U}_{\mathcal{F}} + \mathcal{U}_{\mathcal{W}}$$

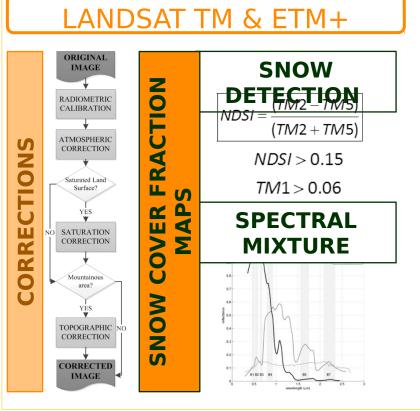
- WiMMed: Physically based and totaly distributed hydrological model
- Develop for Mediterranean regions: Take into account the specific characteristic of the snow in semiarid areas
- Spatial resolution: 30x30m
- Temporal resolution : hour
- Calibration and validation
 - in-situ measurements
 - Remote sensing information




$$\frac{dSWE}{dt} = R - E - F + W$$

$$\frac{\partial \mathcal{U}}{\partial t} = \mathcal{K} + \mathcal{L} + \mathcal{H} + \mathcal{G} + \mathcal{U}_{R} - \mathcal{U}_{F} + \mathcal{U}_{W}$$


- WiMMed: Physically based and totaly distributed hydrological model
- Develop for Mediterranean regions: Take into account the specific characteristic of the snow in semiarid areas


Distributed modelling

MODIS (MOD10.A1)

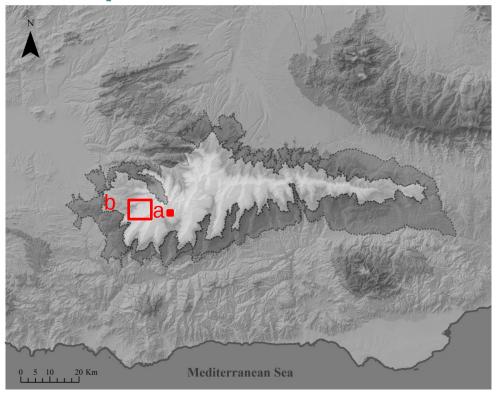
Snow cover fraction

Resprojection and study area selection

area representation

a) DETAIL SCALE

Terrestrial Photography



a b c

Study site REFUGIO CABALLO SIERRA POQUEIRA HILLSIDE NEVADA

Area ~900 m² ~2500 m² ~4585 Km²

area representation

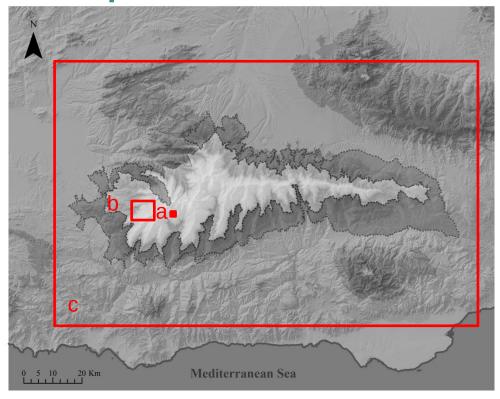
a) DETAIL SCALE

Terrestrial Photography

b) HILLSIDE SCALE

Terrestrial

hotography



a b c

Study site REFUGIO CABALLO SIERRA POQUEIRA HILLSIDE NEVADA

Area ~900 m² ~2500 m² ~4585 Km²

area representation

a b c

Study site REFUGIO POQUEIRA

Area

~900 m²

CABALLO HILLSIDE

~2500 m²

SIERRA NEVADA

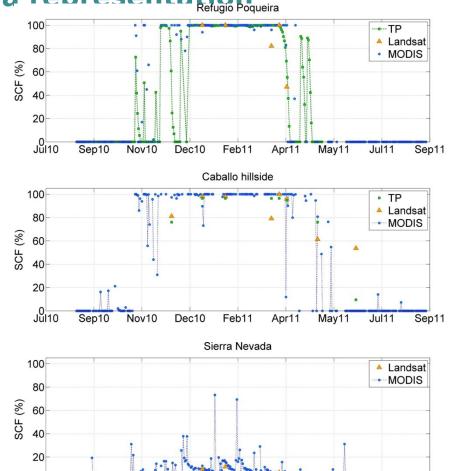
~4585 Km²

a) DETAIL SCALE

Terrestrial Photography

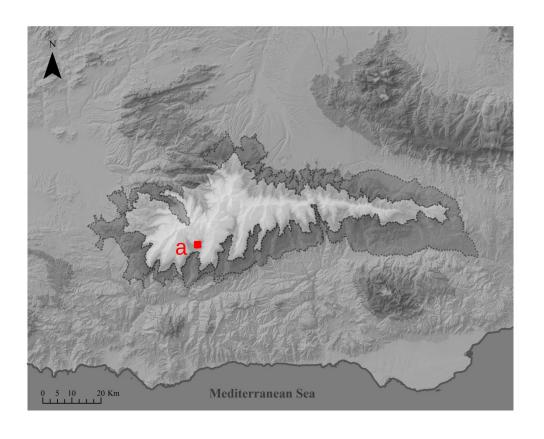
b) HILLSIDE

Terrestrial Photography


c) WATERSHED SCALE

Landsat imagery

Using different remote sensing data to improve snow cover area representation


Jul11

Nov10

- Hillslope scale
 - TP constitute de best technique
 - TP is able to reproduce the interaction between small topography and snow
- Watershed scale
 - MODIS overestimate
 Landsat snow cover area
 - TP is not a real option

MODELING + REMOTE SENSING AT DIFFERENT SCALES

a) **DETAIL SCALE**

Terrestrial
Photography
+
Snow Modelling

a b c

Study site

Area

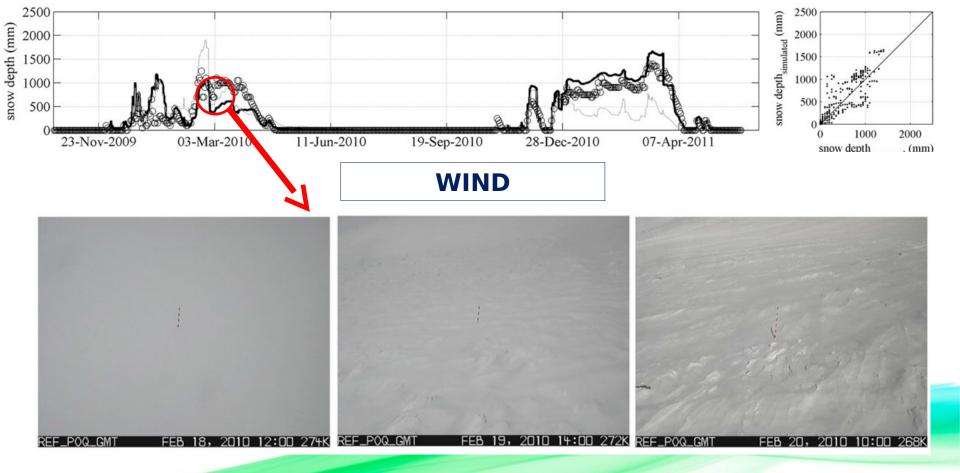
REFUGIO POQUEIRA

~900 m²

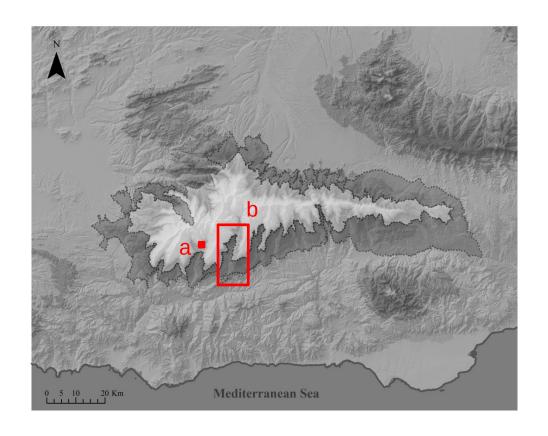
TREVELEZ HILLSIDE

~320 Km²

SIERRA NEVADA


~4585 Km²

MODELING + REMOTE SENSING: Detail scale


Data assimilation schemes

$$x^{a} = x^{f} + K (d - Hx^{f})$$
Filter
$$K = P^{f}H^{f}(HP^{f}H^{T} + R)^{-1}$$

Kalman Filter

MODELING + REMOTE SENSING AT DIFFERENT SCALES

а

b

C

Study site REFUGIO TREVELEZ SIERRA NEVADA

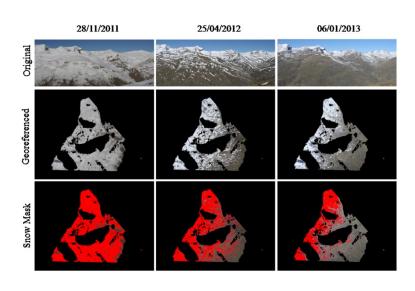
Area ~900 m² ~320 Km² ~4585 Km²

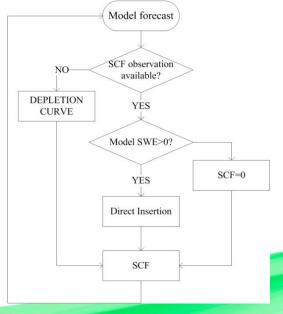
a) **DETAIL SCALE**

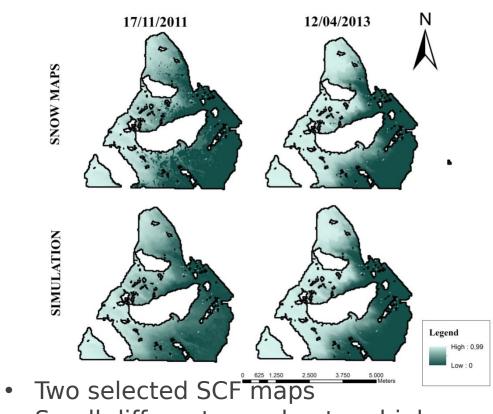
Terrestrial Photography

+

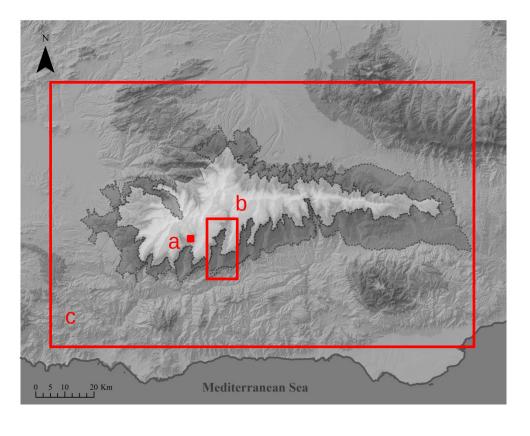
Snow Modelling


b) HILLSIDE SCALE


Terrestrial Photography


Snow Modelling

MODELING + REMOTE SENSING: Hillside scale



- Small different are due to a high influence of the factors not included in the model

WIND TRANSPORT

Not very large difference which

MODELING + REMOTE SENSING AT DIFFERENT SCALES

a b c

a) DETAIL SCALE

Terrestrial Photography

+

Snow Modelling

b) HILLSIDE SCALE

Terrestrial Photography

+

Snow Modelling

c) WATERSHED

Snow Modelling

Study site

Area

REFUGIO POQUEIRA

~900 m²

TREVELEZ HILLSIDE

~320 Km²

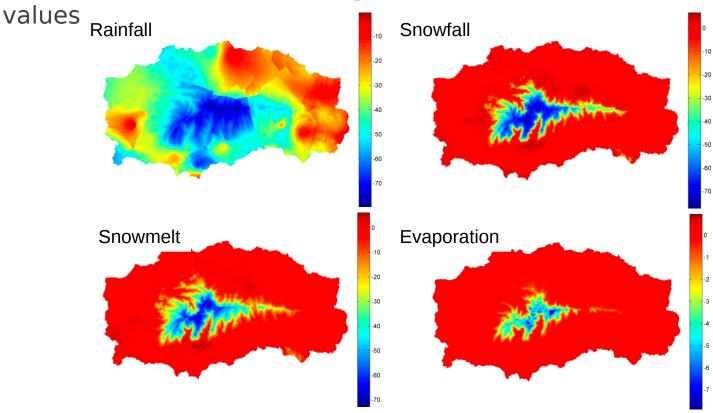
SIERRA NEVADA

~4585 Km²

MODELING: Watershade scale.

• Study period: 2000-2010

Distributed snow modeling: Mean



- Two differents areas in all selected variables. (Permanent and sporadic)
- Zoning between the values and height.
- High correlation between values of precipitation and snowfall (r=0.98)

MODELING: Watershade scale.

• Study period: 2000-2010

Distributed snow modeling: Trend

- Decreasing values trends
- Rainfall always has negative values, being most pronounced in heights.
- Similar, the case of the snowfall.
- The correlation between snowmelt and precipitations high

On the Mediterranean variability of watershed processes

Spatial variability/temporal resolution Need of physical modelling for scenarios simulation

On the physical distributed modelling approach

Extreme gradients and sudden changes in energy and water balance modelling.

Simultaneous calculation at different time scales along the watershed.

Good agreement degree of results, despite the possibly high number of parameters

Snow transport by wind, energy fluxes trends, and soil sensible heat flux

contribution

Spatial scales issues by terrestrial photography data

Implementation of the wind transports

The importance of the evaposublimitation in the model

On the applications for water resource planning

Change of soil use scenarios, climate change scenarios effects,....

Uncertainty "flow" from the meteorological agents to the state variables through the equations

Thank you for your attention

ACKNOWLEDGEMENT:

This work has been supported by the Spanish Ministry of Science and Innovation (Research Project CGL 2014-58508-R, "Global monitoring system for snow areas in Mediterranean regions: trends analysis implications for water resource management in Sierra Nevada") and the Spanish Ministry of Agriculture, Food and Environment (Biodiversity Foundation, Project "Influence of global change on ecosystem services related to hydrology in the Sierra Nevada National Park"). The present work was partially developed within the framework of the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) (Working Group Water and energy fluxes in a changing environment). And the Agency of Environment and Water for

PARQUE NACIONAL

PARQUE NATURAL