Parameterization of single-scattering properties of snow

Petri Räisänen* Finnish Meteorogical Institute

2 Nov 2015

*with thanks to: Alexander Kokhanovsky (EUMETSAT, Univ. of Bremen)

Gwennole Guyot (Univ. Blaise Pascal)

Olivier Jourdan (Univ. Blaise Pascal)

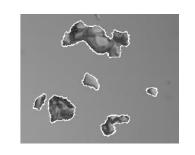
Timo Nousiainen (FMI)

Academy of Finland (A4 project)

Introduction

When snow albedo or directional reflectance is computed using radiative transfer theory, the single-scattering properties (SSPs) of snow grains have to be defined. Especially:

- single-scattering albedo ω (or co-albedo β=1-ω)
 (~ relative strength of scattering vs. absorption)
- asymmetry parameter g
 (~ a gross measure of the directional distribution of scattering)


Also needed for remote sensing applications:

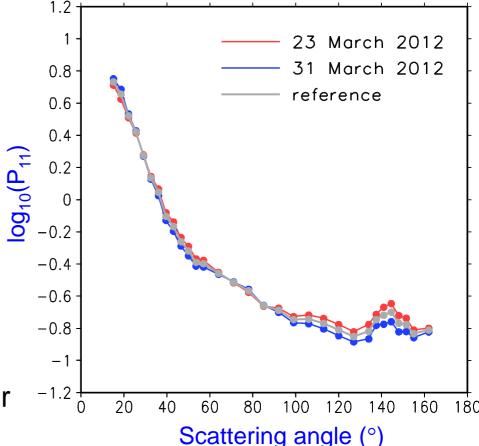
- scattering phase function $P_{11}(\theta_s)$


(~ full directional distribution of scattering)


Introduction (2)

Snow consists of non-spherical, often irregular grains
of various shapes and sizes, and scattering can be
sensitive to the fine details of the grain structure

- ⇒ Modelling of the snow SSPs based on the actual shapes and sizes of snow grains (almost) impossible?
- In many radiative transfer applications, snow grains are still treated as spheres
 - + SSPs easy to compute with Mie theory
 - Spheres do not represent well the scattering by snow
- Other shapes have also been considered
 - * E.g. Koch fractals (Kokhanovsky et al.)


Present approach

- 1) Define a reference phase function $P_{11}^{\rm ref}$ based on angular scattering measurements for blowing snow (CLIMSLIP campaign, Svalbard)
- 2) Select a shape combination that reproduces well the reference phase function (an "optimized habit combination", OHC)
- 3) Calculate SSPs for the OHC as a function of wavelength and snow grain size
- 4) Derive parameterization equations for the SSPs
 - single-scattering albedo ω (or co-albedo $\beta=1-\omega$)
 - asymmetry parameter g
 - scattering phase function $P_{11}(\theta)$

Reference phase function

- Polar nephelometer measurements for angular scattering by blowing snow* in CLIMSLIP campaign in Svalbard, 23 and 31 March 2012 (wavelength λ=0.8 μm, scattering angle θ_s=15-162°)
- Use the average for the 23 and 31 March cases as a reference

$$P_{11}^{\text{ref}} = \frac{(P_{11}^{23\text{March}} + P_{11}^{31\text{March}})}{2}$$

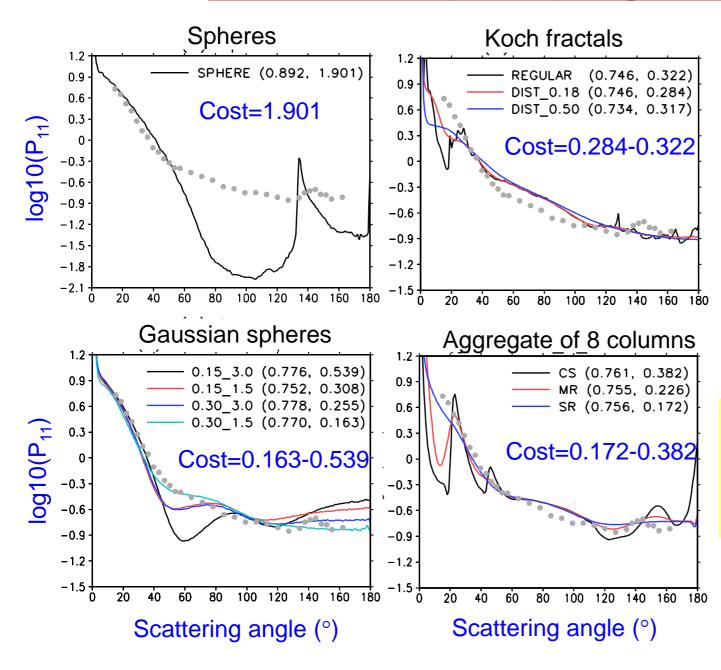
(*Corresponding measurements for snow on ground not yet feasible)

Selecting the habit(s) for representing the single-scattering properties of snow

- Consider the following snow grain shapes (habits)
- Koch fractals

- Gaussian spheres

- 9 habits in the Yang et al. (JAS 2013) database (with 3 "roughness" options)
- spheres (just for comparison)

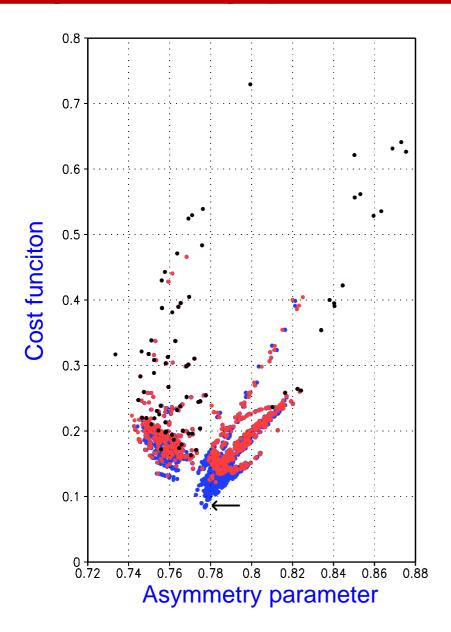

- Single habits, and 2- or 3-habit combinations
- Try to fit the reference phase function. Quantify the

differences with a cost function

$$cost = \int_{15^{\circ}}^{162^{\circ}} \left(\ln P_{11}^{\text{model}} - \ln P_{11}^{\text{ref}} \right)^{2} \sin \theta_{s} d\theta_{s}$$

$$\int_{15^{\circ}}^{162^{\circ}} \sin \theta_{s} d\theta_{s}$$

Some examples (single habits)



Spheres work very badly!

Ice crystals with roughness/irregularities work better than smooth crystals

No single habit works quite satisfactorily ⇒try combinations of 2 or 3 habits!

Asymmetry parameter vs. cost function

Black dots: single habits

Red dots: 2-habit combinations

Blue dots: 3-habit combinations

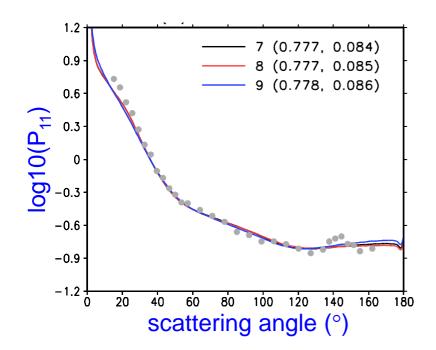
There is no unique solution: many 3-habit combinations are ≈ equally good (COST ≈ 0.085)

The asymmetry parameter is constrained quite well (g≈0.78 at λ=0.80 μm)

- for spheres $g \approx 0.89$

An "Optimized habit combination" (OHC) was selected for representing the snow SSPs


Fraction of projected area


34 % severely roughened droxtals

34 % severely roughened aggregates of plates

32 % strongly distorted Koch fractals

This is how the optimized habit combination (in blue) (+ two other "good" combinations) compare with the reference phase function

Snow single-scattering properties as a function of wavelength and size

Use the optimized habit combination to represent snow SSPs at "all" wavelengths and "all sizes"

- volume-to-projected area equivalent radius r_{vp}=10-2000 μm
- wavelength λ =0.199–2.7 µm
- SSPs for droxtals and aggregates of plates taken from the database of Yang et al. (2013)
- SSPs for disorted Koch fractals computed using a geometric optics model by Andreas Macke

Parameterization of snow SSPs

When the shape distribution is fixed (as here), the single-scattering properties depend only on

- Real part of refractive index Re(m)
- Imaginary part of refractive index Im(m)
- Size parameter (defined here in terms of volume-to-projected area equivalent radius r_{VP})

$$x = x_{\text{VP}} = 2\pi \frac{r_{\text{VP}}}{\lambda} \sim \frac{\text{size}}{\text{wavelength}}$$

Parameterization equations for the snow SSPs were developed in terms of these fundamental parameters, for

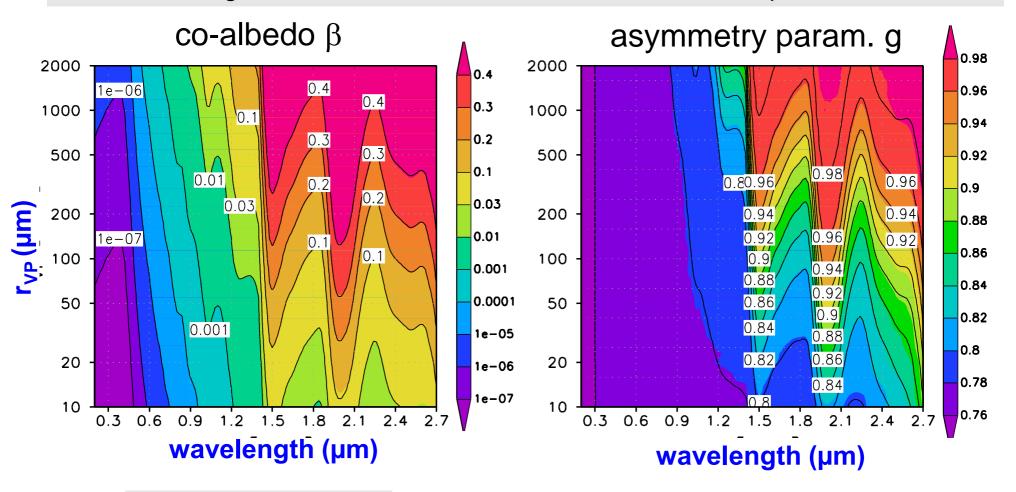
- volume-to-projected area equivalent radius r_{vp}=10-2000 μm
- wavelength λ =0.199-2.7 µm

Parameterization equations

- 1) Extinction efficiency: $Q_{ext}=2$ (for simplicity)
- 2) Single-scattering co-albedo:

$$\beta = 0.470 \left\{ 1 - \exp\left[-2.69x_{abs}(1 - 0.31\min(x_{abs}, 2)^{0.67}\right] \right\}$$

where
$$x_{abs} = \frac{2\pi r_{vp}}{\lambda} \operatorname{Im}(m) \operatorname{Re}(m)^2$$
 ("A size parameter for absorption")

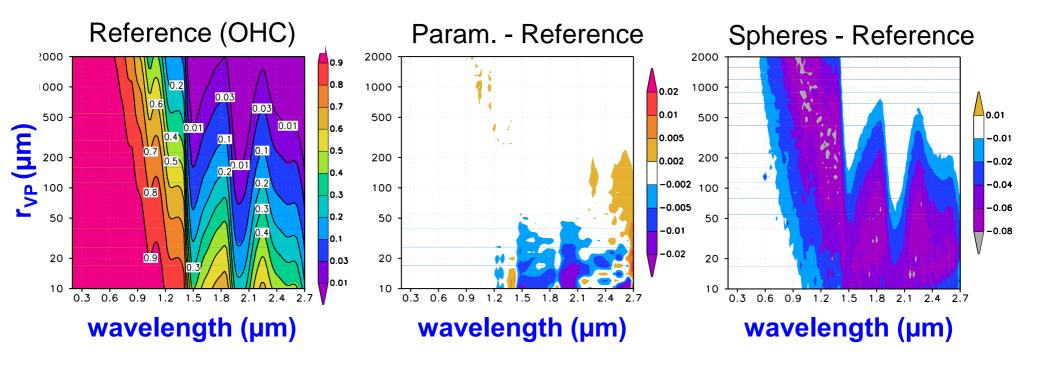

3) Asymmetry parameter:

$$g = 1 - 1.146 \left[\text{Re}(m) - 1 \right]^{0.8} \left[0.52 - \beta \right]^{1.05} \left[1 + 8x^{-1.5} \right]$$

4) Phase function: (not that long, but too long for this talk ...)

How does it work?

Below: shading = reference values for the OHC, contours = parameterization



RMS($\Delta\beta/\beta$) = 0.014 RMS(Δ g) = 0.0019

⇔ A very successful "fitting exercise"!

An example of radiative transfer applications: the albedo of a semi-infinite snow layer

•Direct illumination, zenith angle θ_0 =60°

- The parameterization reproduces the reference values mostly within 0.002
- For spheres, for a given snow grain size r_{VP} , the albedo is lower by up to 0.08

Final remarks

- The parameterizations are simple to use in radiative transfer models such as DISORT
- •Their numerical accuracy (compared to the "exact" SSPs computed for the OHC) is very high, for both the co-albedo β and the asymmetry parameter g, and even for the phase function (except for strongly absorbing cases with low snow reflectance).
- The parameterizations are based on a rather limited amount of data (only two cases, a single weakly-absorbing wavelength, blowing snow instead of snow on ground)
 - ⇒ real-world accuracy ≠ the accuracy of the numerical fits
- Then why bother to procude such a parameterization?

Even though not perfect, it is **likely to be substantially better than**Mie theory (spheres), which is still used widely for snow for simplicity

Final remarks (2)

Follow-up research topics (ongoing work, though slowly!)

- Validation against BRDF measurements for snow on ground
- Climate model experiments with NorESM

For more information, see

Räisänen, P., Kokhanovsky, A., Guyot, G., Jourdan, O., and Nousiainen, T.: Parameterization of single-scattering properties of snow, *The Cryosphere*, **9**, 1277-1301, doi:10.5194/tc-9-1277-2015, 2015.

A fortran code for the parameterization:

https://github.com/praisanen/snow_ssp