
UK contributions and activities

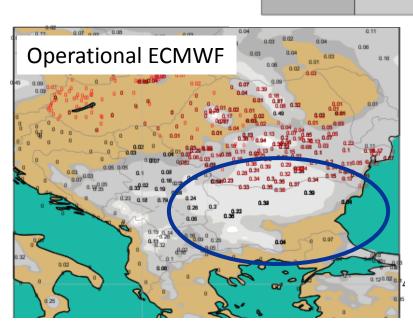
Working Group 3 Samantha Pullen (UK)

Dr Samantha Pullen UK Met Office WG3

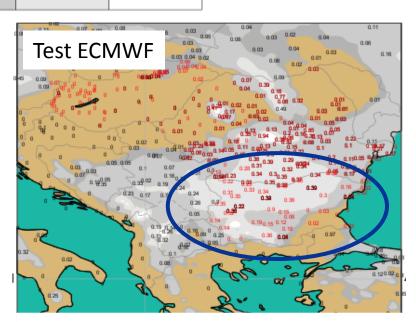
Snow Observations availability in Europe

For NWP

Dr Patricia de Rosnay


Operational snow observations on the GTS SYNOP + national BUFR data 0.05

19 January 2016 Snow depth in m

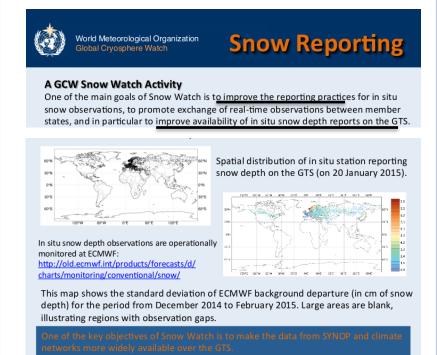

0.5

ECMWF

Lack of observations in Bulgaria Pointed out at the last meeting

39 more stations provided by NIMH, in the dedicated BUFR (more red obs values)

Contribution of the COST action to improve snow depth data exchange


- → Action from ECMWF and NIMH following November 2015 meeting
- → Tested in the ECMWF data Assimilation (1 month test in oper config)
- → Suitable for operational use

P de Rosnay and I. Gospodinov

Link with GCW Snow Watch

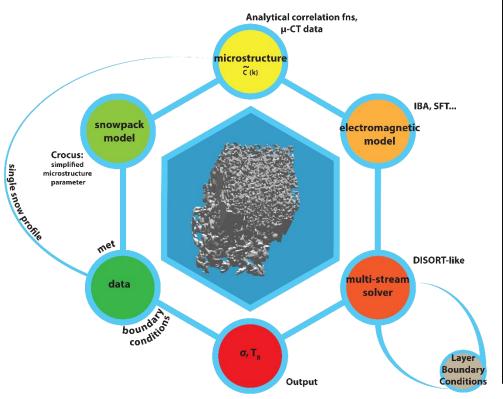
GCW Snow Watch Activity on Snow reporting

Snow Watch reporting Handout (ECMWF/UKMO)

http://globalcryospherewatch.org/reference/documents/

Dr Richard Essery

University of Edinburgh


WG3

- Assimilation of snow depth measurements to constrain the snow mass state variable in models relies on an accurate model background estimate of snow density
- Recent development of multi-physics snow and land surface models (e.g. FSM, NOAH-MP, SUMMA) allows implementation of multiple parametrizations for snow compaction
- Recent publication of datasets for multiple winters at snow research sites (e.g Col de Porte, Sodankyla, Weissfluhjoch) will allow development and evaluation of parametrizations

Development of community snow microwave scattering model

Dr Mel Sandells wg3

(CORES + European consortium)

For future satellite missions / improve snow microstructure representation

European collaboration, ESA funded

New active/passive model + existing

Modular, python

New microstructure = correlation functions, use IBA theory

Currently multiple angle solver, could include others e.g. 6-flux

Highly configurable but easy to use

Forcing: (met), SWE, density, depth, temperature, stratigraphy, micro-CT / SSA....

Evaluation: backscatter / brightness temperature.

Good quality, spatially & temporally concurrent, preferably over season

Dr Nick Rutter wg1, wg2

Northumbria University, Newcastle upon Tyne, UK

Snow hydrology & meteorology

- Modelling snow-vegetation-atmosphere interactions.
- Evaluation of passive and active microwave radiative transfer models of snow.
- Snow on sea ice.

