

Report on the

WORKSHOP ON IN-SITU SNOW ALBEDO MEASUREMENTS: TOWARD A SNOW ALBEDO INTERCOMPARISON EXPERIMENT

(HELSINKI, 24-25.08.2016)

Roberta Pirazzini (FMI), Ghislain Picard (UGA, LGGE), Michele Citterio (GEUS), Gregor Hülsen (PMOD/WRC)

Outlook

- Summary on measurement accuracy: presently achieved vs desired
- Best practices for calibration/characterization of instruments
- Protocol to minimize and quantify measurement uncertainties due to measurement setup and environmental conditions
- 4. Recommendations concerning the use of auxiliary tools to measure/monitor ancillary snow properties
- 5. Upcoming activities

Summary on measurement accuracy: presently achieved vs desired

WISHES FROM THE DATA USERS

1) Remote sensing community

Representativeness of the data:

- •Many point measurements (broadband and spectral albedo) without need of high accuracy
 - •Sledge-based albedo station with Trios/pyranometers+camera+snow pit observations+roughness+impurity
 - UAV equipped with broadband and spectral sensors
- Single point measurement with high accuracy (located close to long term monitoring AWS)

Summary on measurement accuracy: presently achieved vs desired

WISHES FROM THE DATA USERS

1) Remote sensing community

Data format:

- common standardized format
- Standardized metadata (detailed, with well explained definitions, explanation of corrections/calibrations/quality checks, traceable data processing)

2) Modelling community

For SMB estimations:

Time series covering the critical albedo changes and the seasonal cycle (temporal resolution is equally important as data accuracy)

For Snow grain size (SSA) estimation:

Spectral Albedo accuracy should be **0.01** or better (to give an error in snow grain size in the order of 10%).

For BC estimation and organic impurities:

Spectral Albedo accuracy should be **0.01** or better (to give an error in BC estimation larger than 50 % error in the retrieval of BC (if BC is 100pp and grain size is 0.1 mm).

Summary on measurement accuracy: presently achieved vs desired

ACCURACY IN MEASUREMENTS

Spectral albedo:

- With white reference standard (narrow FOV):
 10-17% (without angular and shadow corrections), <5% (with corrections)
- transparent diffuser (cosine collector), $350 < \lambda < 2500$ nm: 10-17% (without angular and shadow corrections), <10% (with correction)
- transparent diffuser (cosine collector), 350 < λ < 1100 nm: 10-15% (without corrections), <5% (with correction)
- integrating sphere: <5% (with corrections)</p>
- Spectral BRDF: 5-10%
- Narrowband albedo: 5-10%
- Broadband albedo: 5%

Best practices for calibration/characterization of instruments

VARIOUS INSTRUMENTS, NUMEROUS DESIGNS, ...

Need to group them for their application and hence a definition of Albedo:

Spectral Global Albedo

Spectral Direct Albedo (FOV=XX deg)

Weighted Global Albedo (ERY, UVB, UVA, UVG, SW, IR...)

Effective Albedo

→ ALBEDO, never has been proved

Need for homogenization of the measurement

Best practices for calibration/characterization of instruments

CALIBRATION AND CHARACTERIZATION OF THE INSTRUMENTATION

What:

- Cosine Response followed by the calculation of cosine correction function
- BB: Spectral Responsivitiy
- Absolute vs. Relative Responsivity → Remark: Full System (Optics, Fiber, Detector)
- Temperature Dependency for low Temperatures (Sensor,Input Optic diffuser material)
- Stability → Frequency of recalibration, Accepted procedure

"Where"

- Ring comparison of one selected instrument
- Ring comparison using a "Albedo travel standard" (White Box thing WBT" or Roving Instrument)

Accredited Calibration Facility FMI, NPL, WRC (money)

Best practices for calibration/characterization of instruments

UNCERTAINTY DOCUMENT

Measurement uncertainty $u=sqrt(a^2 + b^2 + c^2 + d^2 + ...)$

Expanded Uncertainty U=2u (k=2)

Define a,b,c,d,...

Estimate (calculate if possible, sensitivity studies): Absolute or relative calibration,

Cosine Error, Diffuse, Clear Sky, Sun & Clouds, Wavelength scale

Stability: Before / After measurement period, between?

Measurement Errors: Orientation, Shadow, Operator

INTERCOMPARISON CONSIDERATIONS

Appel vs. Appel

Albedo vs. Albedo

Independ on the instrument: U=sqrt(UinstA^2 + UinstrB^2)

Reduce variabilities: Homogeneous, stable weather and ground conditions

Facility for instrument characterization, Location, date and timeframe (few days)

Protocol to minimize and quantify measurement uncertainties due to measurement setup and environmental conditions

MEASUREMENT SETUP:

- Tilt / leveling
- Sensor orientation w/r sun
- stability of the platform (on ice / sea-ice / ground)
- footprint size / installation height
- shadows
- reliability (power, electronics, ...)
- Signal/noise ratio (infra-red)

ENVIRONMENTAL CONDITIONS:

- slope
- high SZA, low SZA
- Hoar / riming / precipitation on the sensor (liquid and solid), dirt
- Snowfall -> height variations
- Temperature
- Sastrugi formation and melting due to the station and poles
- Rapid illumination variations

Protocol to minimize and quantify measurement uncertainties due to measurement setup and environmental conditions

RECOMMENDATIONS

- Instrument setup:
- Recommendation of the installation height (2 m if no accumulation issues)
- Distance of the sensors from the main pole (at least 1.5 m, 2 recommended),
 compromise between distance and vibration issues due to wind
- Ventilation + heating system (e.g. CNR4) : energy issue
- Sensors orientation/azimuth and position of the solar panels
- Separate pole for data logger and sola panel to avoid shadow
- Possibly bury the electronic and data logger (in snow or ice)
- (Ideally obtain the raw data to reprocess (spectral albedo)
- Sensitivity/Interpolation/Transition between the photo sensors (VIS-NIR-SWIR))
- High and low SZA: characterize the SZA dependency of the cosine collector and correct both incoming and reflected spectrum

Protocol to minimize and quantify measurement uncertainties due to measurement setup and environmental conditions

MITIGATION

- Ad Hoc corrections:
- Tilt corrections (several recent studies)
- Basic shadow correction (manual measurements)
- Develop and distribute a code to calculate the shadow effect of any simple setup.

Recommendations concerning the use of auxiliary tools to measure/monitor ancillary snow properties

AUXILIARY OBS. TO CORRECT ALBEDO

- Tilt of radiometers, slope of surface, height above surface, GPS time and pos.
- For spectral irradiance: diffuse to total radiation
- Temperature (and other relevant parameters) of sensor
- Pics of sensor and surroundings (ground and sky, cloud conditions)

Coincident weather observations and radiative fluxes

Recommendations concerning the use of auxiliary tools to measure/monitor ancillary snow properties

AUXILIARY SNOW OBS TO UNDERSTAND ALBEDO (ANCILLARY SNOW PROPERTIES)

- Surface roughness (scale: 'multiscale'): laser scanning, stereophotogrammetry, plate & camera
- Longwave flux → surface melting vs. not melting
- Light penetration with depth, and T profile
- Spectral goniometer observations, or at least broadband or narrowband
- SSA, BC, dust, microbiology: if among objectives, need manual in situ independent from optical properties, incl. during snow melt and vertical profiles below the snow surface of: density, crystal shape, water content, -record site visit metadata, including picture, show snow conditions

Upcoming activities

- 1. **Document** (white paper/ report) that summarize the results of the workshop.
- 2. Laboratory characterization/intercomparison:
 - We need to write the calibration/characterization protocols:
 - Irradiance/radiance calibration
 - Wavelength calibration
 - Angular response characterization
 - Characterization of thermal dependence of sensitivity
 - Calibration should be done before the field experiment, characterization can be done at any time.
 - Table to be filled, for the selection of the instruments and arrangement of the setups.
 - We need to select the lab (FMI-Helsinki is one option. Davos? NPL? Grenoble?).
 - Time (it depends on the selected lab...)

3. Field intercomparison:

- Spectral radiometers only?
- Manual instruments only?
- Possible sites (should be flat, free from obstacles in a wide area, with a guaranty of receiving enough snow, with good supporting facilities): airport field in Sodankylä, ...

Table for the lab characterization

Χ

Contact Scientist	Roberta Pirazzini (FMI)

Instrument

Name SVC spectro-albedometer

Size 42x50x15cm

Weight 10 kg

Power requirement 24 V

Wavelength range 350-2500nm

 \leq 3.5 nm (700nm), \leq 9.5 nm (700nm), \leq 6.5 nm

Wavelength resolution (700nm)

Field of view (foreoptics) 178.x deg

Fiber optic connection (Yes/No) No

Calibration and characterization

Irradiance/Radiance calibration x

Wavelenght calibration x

Angular response characterization x

Characterization of thermal dependence of

sensitivity

15