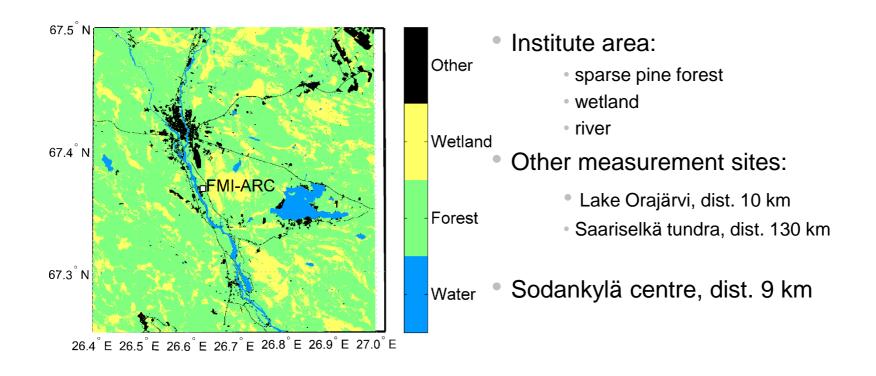

Snow monitoring at FMI Arctic Research Centre

Anna Kontu FMI Arctic Research

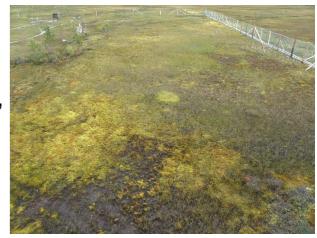


Introduction

Location

Surroundings

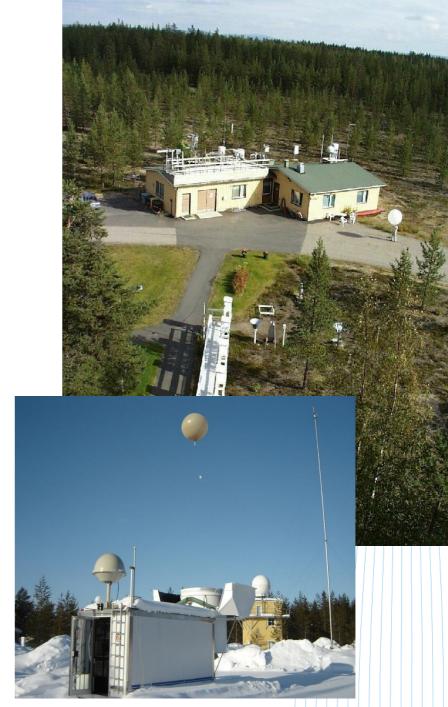
Main building


IOA: Snow measurements, soil, radiation

Satellite reception

Sounding station: Weather station, radiation

Bog site: Weather station, radiation, soil, CO flux



Micrometeorological mast: CO2 flux, radiation, wind & temperature & humidity profiles

History

- First thermo-/barometer records in 1856
- Met station during the 1st IPY 1882/83
- Continuous homogenized synoptic weather records from 1908 onwards
- Upper air soundings from 1949
- Solar radiation observations since 1957/58 (1st IGY)
- Radioactivity monitoring since 1963
- Air quality observations since 1970s
- Ozone and UV-observations since 1988
- Stratospheric Aerosol/Humitidy from mid 1990s
- Micrometeorological tower 1999
- Weather radar at Luosto 2000
- Snow in situ measurements 2006
- Microwave radiometers 2009
- Large capacity satellite data reception & archiving 2011
- WMO hosted comparative set of snowing and raining instrumentation 2013

Infrastructure

Main focus on

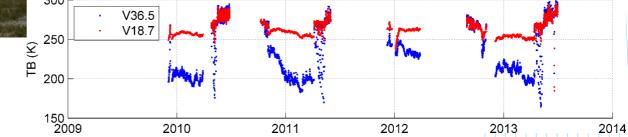
- Satellite activities: reception, processing and archiving
- CAL-VAL super-site
- Freeze/thaw measurements
- Snow measurements: in-situ, airborne and spaceborne
- Atmospheric soundings
- Meteorological parameters
- Carbon cycle

On-site facilities

- Accommodation up to 40 persons
- Lecture hall
- · Several meeting rooms
- · Extensive wifi
- Workshops: metal, wood, electronics
- Biological laboratory
- Dark room
- Several saunas and riverside hut

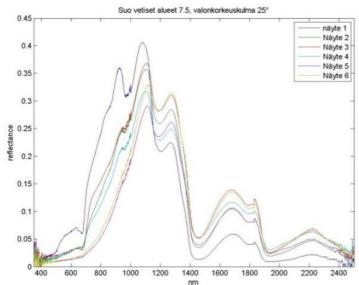
Campaigns and training schools

- ESA/NoSREx (2009-2013)
- COST-Pergamon summer school (2013)
- 1st European Snow Science Winter School (2015)



Snow and reference measurements

SORAX – Sodankylä Radiometer Experiment


- ELBARA-II: ESA SMOS reference
 - 1.4 GHz
 - At forest site 2009-2012, 2015->
 - At bog site: 2012-2015
 - Elevation scan every hour
- SodRad1 & 2: RPG-DP-XCH
 - 10.7, 18.7, 21, 36.5, 89, 150 GHz
 - Since 2009/2012
 - 2D scan every hour

Mast spectrometer

- ASD FieldSpec Pro Jr
- VIS and NIR spectrum, 350-2500 nm (since 2015 only 350-1000 nm)
- Installed in a 30-m mast, measures forest and open area
- Similar instrument used in field and dark room laboratory measurements
- Since 2006

Long- and shortwave solar radiation

- IOA and bog site:
 - Global and reflected SW
- Met mast and forest:
 - Global and reflected SW+LW
- Sounding station:
 - Global and reflected SW at field and in tower
- Most since 2012

Reference measurements

at IOA

Snow depth, air temperature and humidity

Disdrometer (precipitation type and intensity)

Soil permittivity/temperature/moisture

+ Snow temperature

Snow scale (SWE)

Soil moisture stations

Automatic weather station

- Main weather station at sounding station
 - Temperature, dew point temperature
 - Relative humidity
 - Air pressure
 - Snow depth
 - Visibility
 - Wind speed and direction
 - Cloud height and cloudiness
- Smaller (SD, Tair) at IOA and bog site
- Continuous homogenized synoptic weather records since 1908
- Main parameters automatic since 2008

Manual observations

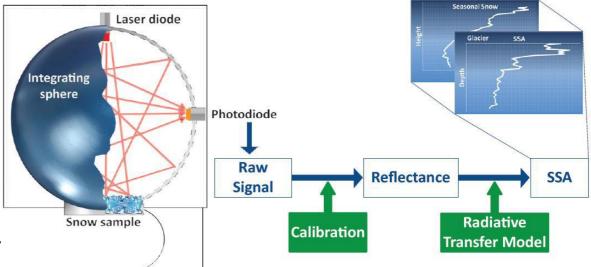
Snow pit

Profiles of

- Snow stratification (visual, SMP)
- Grain size (visual, macrophotos)
- SSA (IceCube)
- Density and SWE (Snowfork, scale)
- Temperature
- Wetness (Snowfork)
- Operationally 1/week at IOA
 - Previously operationally at bog and lake
 - During campaigns even several pits/day at each site

Snow stratification

Grain size



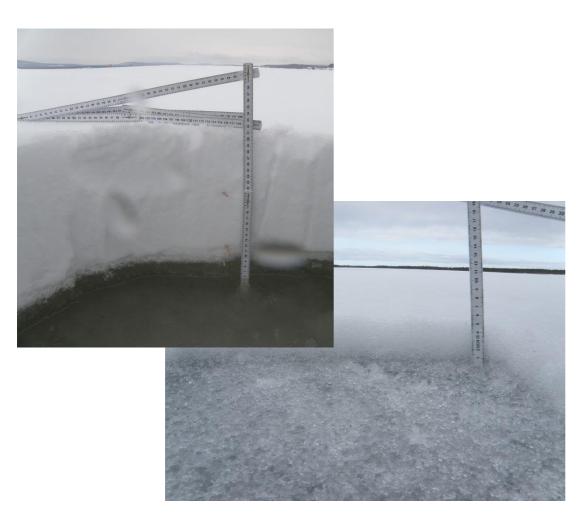
SSA

SSA profile with 3 cm resolution

 Measures hemispherical reflectance of infrared laser (1310 nm) from snow sample surface

 Results are converted to reflectance and forward SSA with software

Density



Lake ice and snow

13.11.2015 **21**

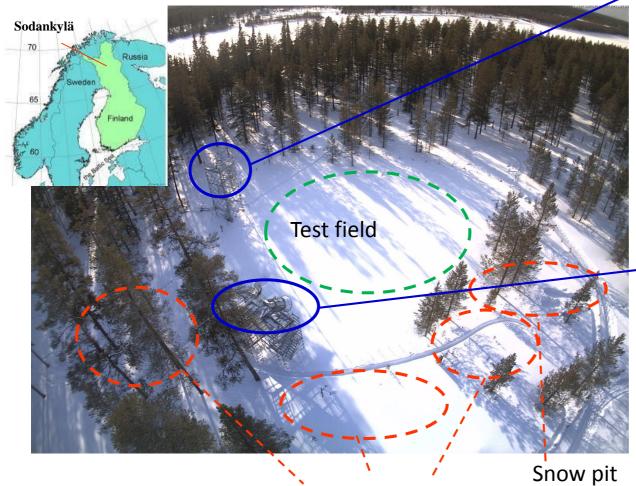
Examples of past campaigns and training schools

WMO SPICE Solid Precipitation Intercomparison Experiment

- Intercomparison of precipitation detectors, precipitation gauges, snow depth sensors, SWE instruments
- 20 sites around the world
- Our interest: snow on ground

 Measurements 2012-2015, now data analysis

13.11.2015 23


ESA NoSREXNordic Snow Radar Experiment

- Goal: Provide data for proposed EE7 CoReH₂O Phase A studies:
 - Seasonal signatures of snow covered terrain (scatterometer + radiometer measurements at fixed site)
 - Spatial variability of backscatter signal (airborne measurements)
 - → CoReH₂O retrieval algorithm development and mission concept demonstration
- Data from four full winter seasons
 - NosREx I: 2009-2010
 - NoSREx II: 2010-2011 (airborne test)
 - NoSREx III: 2011-2012 (airborne concept demo)
 - NoSREx IV: 2012-2013
- Continuous measurements with ESA SnowScat (X to Ku band scatterometer) and radiometers (L to W band)
- Weekly/daily observations of snow micro- and macrophysical properties
- Airborne campaigns with ESA SnowSAR system

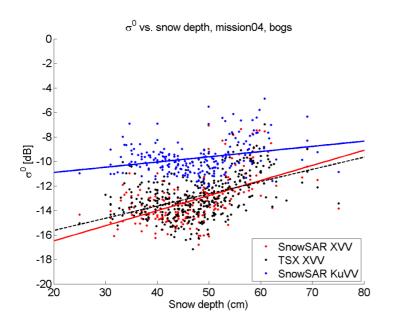
NoSREx setup

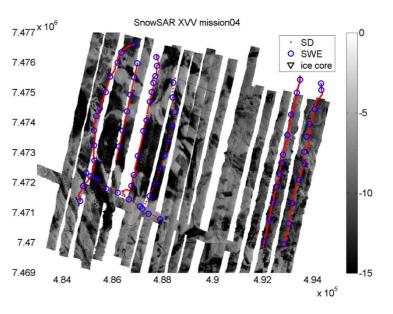
Photo: webcam on 30 m tower

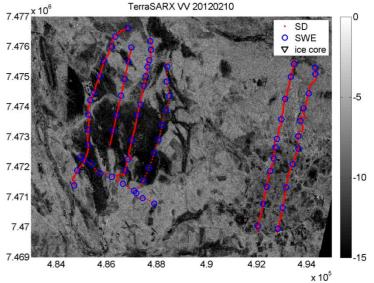
Automatic sensors (Temperature, bulk SWE, SD)

SnowScat (X to Ku freq. scan)

- Azimuth scanning
- incidence angles 30-60°


L to W band radiometers


• incidence angles 30-60°

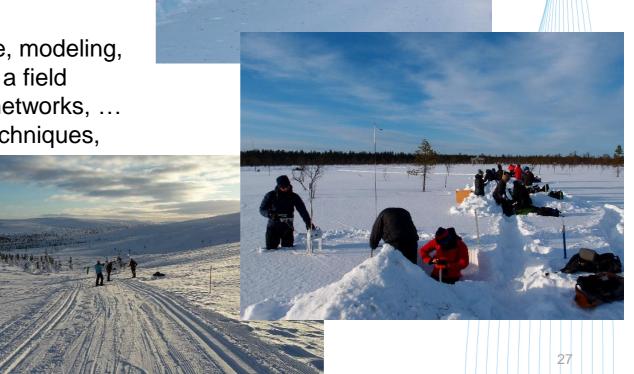


SnowSAR flights

1st European Snow Science Winter School

Organizers: WSL-SLF and FMI

February 2015 in Sodankylä, Finland


 25 students, 8 lecturers from 12 countries in Europe and North America

 Lectures on snow structure, modeling, remote sensing, preparing a field campaign, measurement networks, ...

Focus on field work and techniques,

instrumentation

 Different snow: forest, bog, lake, tundra

